GZ302-Linux-Setup

ROCm 7.1.1 Support for GZ302 (AMD Radeon 8060S)

Date: December 9, 2025
ROCm Version: 7.1.1 (Production) / 7.9.0 (Technology Preview)
GPU: AMD Radeon 8060S (RDNA 3.5, Strix Halo)


Overview

ROCm 7.1.1 is the current production release for AMD GPUs. The GZ302’s Radeon 8060S (RDNA 3.5 architecture) can leverage ROCm for AI/ML workloads, though official support status depends on AMD’s hardware support matrix.

Key Information


Radeon 8060S Support Status

Official Support

The Radeon 8060S (Strix Halo) is part of the RDNA 3.5 generation. ROCm support considerations:

  1. gfx1150 Target: Strix Halo uses gfx1150 architecture
  2. Consumer GPU: Radeon 8060S is consumer/mobile, not data center
  3. ROCm Compatibility: May work with HSA_OVERRIDE_GFX_VERSION=11.0.0 for RDNA 3.x compatibility

Support Matrix

Component Status Notes
ROCm 7.1.1 Runtime ⚠️ Unofficial Consumer GPU, may need overrides
PyTorch with ROCm ✅ Supported Via gfx1100 compatibility mode
TensorFlow with ROCm ✅ Supported Via gfx1100 compatibility mode
Ollama with ROCm ✅ Supported Works with override
bitsandbytes ✅ Supported RDNA 3 compatible
MIOpen ✅ Supported Via gfx1100 mode

Installation Recommendations

Method 1: System ROCm Installation

For Arch Linux:

# Install ROCm from official repos
sudo pacman -S rocm-hip-runtime rocm-opencl-runtime

# Install development tools
sudo pacman -S rocm-hip-sdk rocm-opencl-sdk

# Set environment variables
export HSA_OVERRIDE_GFX_VERSION=11.0.0
export ROCM_PATH=/opt/rocm

For Ubuntu:

# Add ROCm repository
wget https://repo.radeon.com/amdgpu-install/latest/ubuntu/jammy/amdgpu-install_6.3.60300-1_all.deb
sudo apt install ./amdgpu-install_6.3.60300-1_all.deb

# Install ROCm
sudo amdgpu-install --usecase=rocm

# Set environment
export HSA_OVERRIDE_GFX_VERSION=11.0.0

Using Conda:

# Create environment with PyTorch ROCm
conda create -n rocm python=3.11
conda activate rocm
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia

# Or use PyTorch ROCm build
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.2

Method 3: Docker Containers

Using Official ROCm Containers:

# Pull ROCm PyTorch container
docker pull rocm/pytorch:rocm7.1.1_ubuntu22.04_py3.10_pytorch_release_2.3.0

# Run with GPU access
docker run -it --device=/dev/kfd --device=/dev/dri \
    --group-add video --cap-add=SYS_PTRACE \
    --security-opt seccomp=unconfined \
    rocm/pytorch:rocm7.1.1_ubuntu22.04_py3.10_pytorch_release_2.3.0

Environment Configuration

Required Environment Variables

Add to ~/.bashrc or ~/.zshrc:

# ROCm Paths
export ROCM_PATH=/opt/rocm
export PATH=$ROCM_PATH/bin:$PATH
export LD_LIBRARY_PATH=$ROCM_PATH/lib:$LD_LIBRARY_PATH

# GPU Override for RDNA 3.5 (gfx1150)
export HSA_OVERRIDE_GFX_VERSION=11.0.0

# Optional: Performance tuning
export GPU_MAX_HEAP_SIZE=100
export GPU_MAX_ALLOC_PERCENT=100
export HSA_ENABLE_SDMA=0

Verification

# Check ROCm installation
rocminfo

# Check GPU detection
rocm-smi

# Test PyTorch ROCm
python3 -c "import torch; print(f'ROCm available: {torch.cuda.is_available()}'); print(f'GPU: {torch.cuda.get_device_name(0) if torch.cuda.is_available() else \"None\"}')"

Known Issues and Workarounds

Issue 1: gfx1150 Not in Official Support List

Problem: Radeon 8060S (gfx1150) may not be in ROCm’s official support matrix.

Workaround:

export HSA_OVERRIDE_GFX_VERSION=11.0.0

This tells ROCm to treat the GPU as gfx1100 (RDNA 3.0), which is officially supported.

Issue 2: Ollama ROCm Detection

Problem: Ollama may not automatically detect ROCm on consumer GPUs.

Workaround:

# Force Ollama to use ROCm
OLLAMA_ROCM=1 ollama serve

# Or set permanently
echo 'export OLLAMA_ROCM=1' >> ~/.bashrc

Issue 3: PyTorch CUDA vs ROCm

Problem: PyTorch defaults to CUDA terminology even with ROCm.

Expected Behavior:

Issue 4: Memory Allocation Failures

Problem: Large models may fail to allocate memory.

Workaround:

# Increase heap size
export GPU_MAX_HEAP_SIZE=100
export GPU_MAX_ALLOC_PERCENT=100

# For Ollama, limit context
ollama run llama3.1:8b --ctx-size 4096

Performance Expectations

Radeon 8060S Specifications

Realistic Performance

LLM Inference (with Ollama):

Stable Diffusion:

PyTorch Training:


Comparison: ROCm vs CPU

When to Use ROCm (GPU)

Good for:

Not ideal for:

When to Use CPU

Good for:


Integration with GZ302 Toolkit

gz302-llm.sh Updates

The gz302-llm.sh module has been updated to support ROCm 7.1.1:

# Install LLM tools with ROCm 7.1.1
sudo ./gz302-llm.sh

# Features:
# - Ollama with ROCm support
# - PyTorch with ROCm 7.1.1
# - bitsandbytes for RDNA 3
# - Environment variable setup
# - Automatic GPU detection

Automatic Configuration

The setup script automatically:

  1. Detects Radeon 8060S
  2. Installs ROCm 7.1.1 runtime
  3. Configures environment variables
  4. Sets up HSA_OVERRIDE_GFX_VERSION
  5. Tests GPU detection

Testing Your Setup

Quick Test Script

#!/bin/bash
echo "=== ROCm 7.1.1 Setup Test ==="
echo

# 1. Check ROCm installation
echo "1. ROCm Installation:"
if command -v rocminfo >/dev/null 2>&1; then
    echo "✓ rocminfo found"
    rocminfo | grep "Name:" | head -1
else
    echo "✗ rocminfo not found"
fi
echo

# 2. Check GPU detection
echo "2. GPU Detection:"
if command -v rocm-smi >/dev/null 2>&1; then
    echo "✓ rocm-smi found"
    rocm-smi --showproductname || echo "GPU detection failed"
else
    echo "✗ rocm-smi not found"
fi
echo

# 3. Check environment
echo "3. Environment Variables:"
echo "ROCM_PATH: ${ROCM_PATH:-not set}"
echo "HSA_OVERRIDE_GFX_VERSION: ${HSA_OVERRIDE_GFX_VERSION:-not set}"
echo

# 4. Test PyTorch
echo "4. PyTorch ROCm:"
python3 -c "
import torch
print(f'PyTorch version: {torch.__version__}')
print(f'ROCm available: {torch.cuda.is_available()}')
if torch.cuda.is_available():
    print(f'Device count: {torch.cuda.device_count()}')
    print(f'Device name: {torch.cuda.get_device_name(0)}')
" 2>/dev/null || echo "PyTorch not installed or ROCm not detected"
echo

# 5. Test Ollama
echo "5. Ollama:"
if command -v ollama >/dev/null 2>&1; then
    echo "✓ Ollama installed"
    ollama list 2>/dev/null || echo "No models installed"
else
    echo "✗ Ollama not installed"
fi

Additional Resources

Official Documentation

Community Resources

GZ302-Specific


Changelog

v1.0 (December 9, 2025)


Summary

ROCm 7.1.1 can work with the Radeon 8060S using the HSA_OVERRIDE_GFX_VERSION=11.0.0 workaround. While not officially supported as a consumer/mobile GPU, it provides good AI/ML performance for:

Recommendation: Use ROCm 7.1.1 for AI/ML workloads on the GZ302. The setup is straightforward, performance is good, and the gz302-llm.sh module automates the installation.


Document Version: 1.0
Last Updated: December 9, 2025
Tested On: GZ302EA-XS99 with Radeon 8060S
Status: Production Ready